80 research outputs found

    How do Changes in Land Use Patterns Affect Species Diversity? an Approach for Optimizing Landscape Configuration

    Get PDF
    Heterogeneity of agricultural landscapes is supposed to be of significant importance for species diversity in agroecosystems (Weibull et al. 2003). Thus it is necessary to account for structural aspects of landscapes in land management decision processes. Spatial optimization models of land use can serve as tools for decision support. These models can aim at various landscape functions like nutrient leaching and economical aspects (Seppelt and Voinov 2002), water quality (Randhir et al. 2000) or habitat suitability (Nevo and Garcia 1996). However neighbourhood effects stay unconsidered in these approaches. In this paper we present an optimization model concept that aims at maximizing habitat suitability of selected species by identifying optimum spatial configurations of agricultural land use patterns. Bird species with diverging habitat requirements were chosen as target species. Habitat suitability models for these species are used to set up the performance criterion. Landscape structure is quantified by landscape metrics (McGarigal et al. 2002) estimated within the species home range. Statistical significance of these metrics for species presence was proven by a logistic regression model (Fielding and Haworth 1995). The landscape is represented by a grid based data set. Based on a genetic algorithm the optimization task is to identify an optimum configuration of model units. These model units are defined by contiguous cells of identical land use. Within this concept we can study how optimum but possibly artificial landscapes vary in structure depending on the selected species for which habitat suitability is maximized.

    Modelling urban bird breeding ranges with remotely sensed heterogeneity in plant traits using a random forest

    Get PDF
    Birds strongly respond to vegetation structure and composition, yet typical habitat models based on earth observation (EO) data use pre-classified data such as land use state classes for the habitat modelling. Since this neglects factors of internal spatial composition of the land use classes, we propose a new scheme of deriving multiple continuous indicators of urban vegetation heterogeneity using high-resolution earth observation datasets. The deployed concepts encompass spectral trait variations for the quantification of vegetation heterogeneity as well as subpixel vegetation fractions for the determination of the density of vegetation. Both indicators are derived from RapidEye data, thus featuring a continuous resolution of 5 meters. Using these indicators of plant heterogeneity and quantity as predictors, we can model the breeding bird habitats with a random forest machine learning classifier for our case study Leipzig while exclusively using one input dataset. Separate models are trained for the breeding ranges of 60 urban bird species (including 10 on the German red list), featuring medium to high accuracies (54–87%). Analysing similarities between models regarding variable importance of the single predictors allows species groups to be discriminated based on their preferences and dependencies regarding the amount of vegetation on the one hand, and its structure and heterogeneity on the other. The combination of continuous high-resolution EO data paired with a machine learning technique creates novel and very detailed insights into the ecology of the urban avifauna opening up possibilities of analysing and optimising different greenspace management schemes or future urban developments concerning overall bird species diversity or single species under threat of local extinction

    Reinforcing nature-based solutions through tools providing social-ecological-technological integration

    Get PDF
    While held to be a means for climate change adaptation and mitigation, nature-based solutions (NbS) themselves are vulnerable to climate change. To find ways of compensating for this vulnerability we combine a focused literature review on how information technology has been used to strengthen positive social-ecological-technological feedback, with the development of a prototype decision-support tool. Guided by the literature review, the tool integrates recent advances in using globally available remote sensing data to elicit information on functional diversity and ecosystem service provisioning with information on human service demand and population vulnerability. When combined, these variables can inform climate change adaptation strategies grounded in local social-ecological realities. This type of integrated monitoring and packaging information to be actionable have potential to support NbS management and local knowledge building for context-tailored solutions to societal challenges in urban environments.Peer reviewe

    Let your maps be fuzzy!—Class probabilities and floristic gradients as alternatives to crisp mapping for remote sensing of vegetation

    Get PDF
    Mapping vegetation as hard classes based on remote sensing data is a frequently applied approach, even though this crisp, categorical representation is not in line with nature\u27s fuzziness. Gradual transitions in plant species composition in ecotones and faint compositional differences across different patches are thus poorly described in the resulting maps. Several concepts promise to provide better vegetation maps. These include (1) fuzzy classification (a.k.a. soft classification) that takes the probability of an image pixel\u27s class membership into account and (2) gradient mapping based on ordination, which describes plant species composition as a floristic continuum and avoids a categorical description of vegetation patterns. A systematic and comprehensive comparison of these approaches is missing to date. This paper hence gives an overview of the state of the art in fuzzy classification and gradient mapping and compares the approaches in a case study. The advantages and disadvantages of the approaches are discussed and their performance is compared to hard classification (a.k.a. crisp or boolean classification). Gradient mapping best conserves the information in the original data and does not require an a priori categorization. Fuzzy classification comes close in terms of information loss and likewise preserves the continuous nature of vegetation, however, still relying on a priori classification. The need for a priori classification may be a disadvantage or, in other cases, an advantage because it allows using categorical input data instead of the detailed vegetation records required for ordination. Both approaches support spatially explicit accuracy analyses, which further improves the usefulness of the output maps. Gradient mapping and fuzzy classification offer various advantages over hard classification, can always be transformed into a crisp map and are generally applicable to various data structures. We thus recommend the use of these approaches over hard classification for applications in ecological research

    Gradient-based assessment of habitat quality for spectral ecosystem monitoring

    Get PDF
    The monitoring of ecosystems alterations has become a crucial task in order to develop valuable habitats for rare and threatened species. The information extracted from hyperspectral remote sensing data enables the generation of highly spatially resolved analyses of such species’ habitats. In our study we combine information from a species ordination with hyperspectral reflectance signatures to predict occurrence probabilities for Natura 2000 habitat types and their conservation status. We examine how accurate habitat types and habitat threat, expressed by pressure indicators, can be described in an ordination space using spatial correlation functions from the geostatistic approach. We modeled habitat quality assessment parameters using floristic gradients derived by non-metric multidimensional scaling on the basis of 58 field plots. In the resulting ordination space, the variance structure of habitat types and pressure indicators could be explained by 69% up to 95% with fitted variogram models with a correlation to terrestrial mapping of >0.8. Models could be used to predict habitat type probability, habitat transition, and pressure indicators continuously over the whole ordination space. Finally, partial least squares regression (PLSR) was used to relate spectral information from AISA DUAL imagery to floristic pattern and related habitat quality. In general, spectral transferability is supported by strong correlation to ordination axes scores (R2^{2} = 0.79–0.85), whereas second axis of dry heaths (R2^{2} = 0.13) and first axis for pioneer grasslands (R2^{2} = 0.49) are more difficult to describe

    Data science for environmental health

    Get PDF
    Ecosystems fulfill a whole host of ecosystem functions that are essential for life on our planet. However, an unprecedented level of anthropogenic influences is reducing the resilience and stability of our ecosystems as well as their ecosystem functions. The relationships between drivers, stress and ecosystem functions in ecosystems are complex, multi- faceted and often non-linear and yet environmental managers, decision makers and politicians need to be able to make rapid decisions that are data-driven and based on short- and long-term monitoring information, complex modeling and analysis approaches. A huge number of long-standing and standardized ecosystem health approaches like the essential variables already exist and are increasingly integrating remote-sensing based monitoring approaches [1-2]. Unfortunately, these approaches in monitoring, data storage, analysis, prognosis and assessment still do not satisfy the future requirements of information and digital knowledge processing of the 21st century. This presentation therefore discusses the requirements for using Data Science as a bridge between complex and multidimensional Big Data for environmental health. It became apparent that no existing monitoring approach, technique, model or platform is sufficient on its own to monitor, model, forecast or assess vegetation health and its resilience. In order to advance the development of a multi-source ecosystem health monitoring network, we argue that in order to gain a better understanding of ecosystem health in our complex world it would be conducive to implement the concepts of Data Science with the components: (i) digitalization, (ii) standardization with metadata management adhering to the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles, (iii) Semantic Web, (iv) proof, trust and uncertainties, (v) complex tools for Data Science analysis and (vi) easy tools for scientists, data managers and stakeholders for decision-making support [3-4]. REFERENCES: 1.Lausch, A., Bannehr, L., Beckmann, M., Boehm, C., Feilhauer, H., Hacker, J.M., Heurich, M., Jung, A., Klenke, R., Neumann, C., Pause, M., Rocchini, D., Schaepman, M.E.; Schmidtlein, S., Schulz, K., Selsam, P., Settele, J., Skidmore, A.K., Cord, A.F., 2016. Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecol. Indic. 70, 317–339. doi:10.1016/j.ecolind.2016.06.022. 2.Lausch, A., Erasmi, S., Douglas, J., King, Magdon, P., Heurich, M., 2016. Understanding forest health with remote sensing - Part I - A review of spectral traits, processes and remote sensing characteristics. Remote Sens. 8, 1029; doi:10.3390/rs8121029. 3.Lausch, A.; Bastian O.; Klotz, S.; Leitão, P. J.; Jung, A.; Rocchini, D.; Schaepman, M.E.; Skidmore, A.K.; Tischendorf, L.; Knapp, S. 2018. Understanding and assessing vegetation health by in-situ species and remote sensing approaches. Methods Ecol. Evol. 00, 1–11. doi:10.1111/2041-210X.13025. 4.Lausch, A., Borg, E., Bumberger, J., Dietrich, P., Heurich, M., Huth, A., Jung, A., Klenke, R., Knapp, S., Mollenhauer, H., Paasche, H., Paulheim, H., Pause, P., Schweitzer, C., Schmulius, C., Settele, J., Skidmore, A.K.,, Wegmann, M., Zacharias, S., Kirsten, T.; Schaepman, M.E., 2018. Understanding forest health with remote sensing -Part III - Requirements for a scalable multi-source forest health monitoring network based on Data Science approaches. (Remote Sens., in review)

    Correction to: A Range of Earth Observation Techniques for Assessing Plant Diversity

    Get PDF
    The original version of this book was inadvertently published with an incorrect affiliation

    Understanding forest health with Remote sensing-Part II-A review of approaches and data models

    Get PDF
    Stress in forest ecosystems (FES) occurs as a result of land-use intensification, disturbances, resource limitations or unsustainable management, causing changes in forest health (FH) at various scales from the local to the global scale. Reactions to such stress depend on the phylogeny of forest species or communities and the characteristics of their impacting drivers and processes. There are many approaches to monitor indicators of FH using in-situ forest inventory and experimental studies, but they are generally limited to sample points or small areas, as well as being time- and labour-inte

    Ground Truth Validation of Sentinel-2 Data Using Mobile Wireless Ad Hoc Sensor Networks (MWSN) in Vegetation Stands

    Get PDF
    Satellite-based remote sensing (RS) data are increasingly used to map and monitor local, regional, and global environmental phenomena and processes. Although the availability of RS data has improved significantly, especially in recent years, operational applications to derive value-added information products are still limited by close-range validation and verification deficits. This is mainly due to the gap between standardized and sufficiently available close-range and RS data in type, quality, and quantity. However, to ensure the best possible linkage of close-range and RS data, it makes sense to simultaneously record close-range data in addition to the availability of environmental models. This critical gap is filled by the presented mobile wireless ad hoc sensor network (MWSN) concept, which records sufficient close-range data automatically and in a standardized way, even at local and regional levels. This paper presents a field study conducted as part of the Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN), focusing on the information gained with respect to estimating the vegetation state with the help of multispectral data by simultaneous observation of an MWSN during a Sentinel-2A (S2A) overflight. Based on a cross-calibration of the two systems, a comparable spectral characteristic of the data sets could be achieved. Building upon this, an analysis of the data regarding the influence of solar altitude, test side topography and land cover, and sub-pixel heterogeneity was accomplished. In particular, variations due to spatial heterogeneity and dynamics in the diurnal cycle show to what extent such complementary measurement systems can improve the data from RS products concerning the vegetation type and atmospheric conditions

    Farmer surveys in Europe suggest that specialized, intensive farms were more likely to perceive negative impacts from COVID-19.

    Get PDF
    It has been shown that the COVID-19 pandemic affected some agricultural systems more than others, and even within geographic regions, not all farms were affected to the same extent. To build resilience of agricultural systems to future shocks, it is key to understand which farms were affected and why. In this study, we examined farmers' perceived robustness to COVID-19, a key resilience capacity. We conducted standardized farmer interviews (n = 257) in 15 case study areas across Europe, covering a large range of socio-ecological contexts and farm types. Interviews targeted perceived livelihood impacts of the COVID-19 pandemic on productivity, sales, price, labor availability, and supply chains in 2020, as well as farm(er) characteristics and farm management. Our study corroborates earlier evidence that most farms were not or only slightly affected by the first wave(s) of the pandemic in 2020, and that impacts varied widely by study region. However, a significant minority of farmers across Europe reported that the pandemic was "the worst crisis in a lifetime" (3%) or "the worst crisis in a decade" (7%). Statistical analysis showed that more specialized and intensive farms were more likely to have perceived negative impacts. From a societal perspective, this suggests that highly specialized, intensive farms face higher vulnerability to shocks that affect regional to global supply chains. Supporting farmers in the diversification of their production systems while decreasing dependence on service suppliers and supply chain actors may increase their robustness to future disruptions. Supplementary Information The online version contains supplementary material available at 10.1007/s13593-022-00820-5
    • …
    corecore